Ultrasonic elastography using sector scan imaging and a radial compression.
نویسندگان
چکیده
Elastography is an imaging technique based on strain estimation in soft tissues under quasi-static compression. The stress is usually created by a compression plate, and the target is imaged by an ultrasonic linear array. This configuration is used for breast elastography, and has been investigated both theoretically and experimentally. Phenomena such as strain decay with tissue depth and strain concentrations have been reported. However in some in vivo situations, like prostate or blood vessels imaging, this set-up cannot be used. We propose a device to acquire in vivo elastograms of the prostate. The compression is applied by inflating a balloon that covers a transrectal sector probe. The 1D algorithm used to calculate the radial strain fails if the center of the imaging probe does not correspond to the center of the compressor. Therefore, experimental elastograms are calculated with a 2D algorithm that accounts for tangential displacements of the tissue. In this article, in order to gain a better understanding of the image formation process, the use of ultrasonic sector scans to image the radial compression of a target is investigated. Elastograms of homogeneous phantoms are presented, and compared with simulated images. Both show a strain decay with tissue depth. Then experimental and simulated elastograms of a phantom that contains a hard inclusion are presented, showing that strain concentrations occur as well. A method to compensate for strain decay and therefore to increase the contrast of the strain elastograms is proposed. It is expected that such information will help to interpret and possibly improve the elastograms obtained via radial compression.
منابع مشابه
2D ultrasonic elastography with lateral displacement estimation using statistics.
Ultrasound elastography is the method of obtaining relative stiffness information of biological tissue, which plays an important role in early diagnosis. Generally, a gradient-based strain imaging algorithm assumes that motion only occurs in an axial direction. However, because tissue has different relative stiffness, the scatter presents lateral motion under high freehand compression. Therefor...
متن کاملTheoretical bounds on the estimation of transverse displacement, transverse strain and Poisson's ratio in elastography.
The Cramér-Rao Lower Bounds (CRLB) are derived for the displacement and strain estimation in directions orthogonal to the ultrasonic beam axis, using a previously-described recorrelation method of axial, lateral and elevational motion estimation. We also compare it to the lateral tracking method that involves the sole use of the axial signal in the transverse direction. Our theoretical results,...
متن کاملIntroduction to ultrasound elastography
For centuries tissue palpation has been an important diagnostic tool. During palpation, tumors are felt as tissues harder than the surrounding tissues. The significance of palpation is related to the relationship between mechanical properties of different tissue lesions. The assessment of tissue stiffness through palpation is based on the fact that mechanical properties of tissues are changing ...
متن کاملAnalysis of an adaptive strain estimation technique in elastography.
Elastography is based on the estimation of strain due to tissue compression or expansion. Conventional elastography involves computing strain as the gradient of the displacement (time-delay) estimates between gated pre- and postcompression signals. Uniform temporal stretching of the postcompression signals has been used to reduce the echo-signal decorrelation noise. However, a uniform stretch o...
متن کاملA Centralized Displacement Operation with Application to Artifact Reduction in Ultrasonic Elastography
Because stiff tissue deforms less than soft tissue under the same external compression, elastography can provide relative stiffness information of biological tissue. However, elastography suffers from artifact noise which may come from two dominant sources: decorrelation error and amplitude modulation error. In order to reduce artifacts and improve the quality of ultrasonic elastography, this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonics
دوره 40 1-8 شماره
صفحات -
تاریخ انتشار 2002